
The Social Dynamics of Pair Programming

Jan Chong
Center for Work, Technology and Organization

Management Science and Engineering
Stanford University

jchong@cs.stanford.edu

Tom Hurlbutt
Stanford University HCI Group
Computer Science Department

Stanford University
hurlbutt@cs.stanford.edu

Abstract

This paper presents data from a four month ethno-

graphic study of professional pair programmers from
two software development teams. Contrary to the cur-
rent conception of pair programmers, the pairs in this
study did not hew to the separate roles of “driver” and
“navigator”. Instead, the observed programmers
moved together through different phases of the task,
considering and discussing issues at the same strategic
“range” or level of abstraction and in largely the same
role. This form of interaction was reinforced by fre-
quent switches in keyboard control during pairing and
the use of dual keyboards. The distribution of expertise
among the members of a pair had a strong influence on
the tenor of pair programming interaction. Keyboard
control had a consistent secondary effect on decision-
making within the pair. These findings have implica-
tions for software development managers and practi-
tioners as well as for the design of software develop-
ment tools.

1. Introduction

The practice of pair programming has begun to at-
tract academic attention in recent years [1-5], as more
and more commercial companies consider its use. Pair
programming is perhaps the most unconventional prac-
tice promoted by eXtreme Programming (XP), one of
the many agile programming methodologies that have
recently become popular. With the complexity and size
of modern software projects, most professional pro-
grammers do not work alone, but rather on a software
development team. With the increasing need to coordi-
nate work, programming work has had more and more
of a social component. Programmers commonly turn to
team members for technical knowledge, advice and
programming help. Pair programming raises the level
of collaboration by assigning joint responsibility for

code design and implementation to a pair of program-
mers, who are then expected to work physically side-
by-side on a shared machine.

The most common depiction of pair programming
dynamics utilizes a driving metaphor to describe the
division of labor in a programming pair. The two dis-
tinct roles are referred to as the “driver” and the “navi-
gator.” The driver controls the keyboard and is thought
of as primarily being concerned with implementation,
while the navigator thinks “strategically”, evaluating
implementation decisions and looking for logical pit-
falls. This depiction is pervasive; programmers com-
monly draw upon it to describe their behavior when
asked to explain the practice. But while these roles
have been widely accepted in both the practitioner and
academic literature, they have never been seriously
questioned. This study presents a series of pair pro-
gramming interactions drawn from a long term ethno-
graphic study of two software development teams.
These interactions suggest that the characterization of
pair programmer roles as “driver” and “navigator” may
not be accurate. As a result, the ways in which we cur-
rently train pair programmers may actually run counter
to the ways that pairs work most naturally and effec-
tively.

This mismatch between the dominant conceptuali-
zation of pair programming interactions and the ob-
served interactions between professional pair pro-
grammers working in situ suggest that our understand-
ing of pair programming as a practice is, at best, nas-
cent. There is great enthusiasm for pair programming
as a software development practice; a more thorough
understanding of the dynamics that drive pair pro-
gramming efficacy will allow us to better determine
how to train, manage and support pair programmers.

2. Related Work

We begin with a brief review of pair programming
characterizations in both the academic and practitioner
literature. While pair programming as a concept has
been traced back to the 1950s [6], the practice is per-
haps most widely known in the context of XP. Beck’s
widely cited and widely read book [7], generally con-
sidered to be the first authoritative work on the princi-
ples and implementation of XP, includes pair pro-
gramming as one of the methodology’s twelve prac-
tices. In his discussion of pair programming, Beck
writes:

There are two roles in each pair. One partner, the one
with the keyboard and the mouse, is thinking about the
best way to implement this method right here. The
other partner is thinking more strategically:
- Is this whole approach going to work?

- What are some other test cases that might not
work yet?

- Is there some way to simplify the whole system
so the current problem just disappears?

While Beck’s explanation of pair programming roles
never uses the term “driver” or “navigator”, it does
describe two programmers thinking at distinctly differ-
ent levels of abstraction. The programmer in control of
the keyboard is assumed to be primarily concerned
with the details of implementation; the other partner is
assumed to consider broader, more strategic issues.
Beck’s definition of pair programming and its implica-
tion of the differential in levels of abstraction between
the two programmers is echoed in many of the pair
programming descriptions written by XP devotees. A
blurb from adaptionsoft.com, for example, compares “a
worm’s eye view” (the driver) with a “bird’s eye view”
(the navigator) [8] .

Williams and Kessler [6] provide what is perhaps the
most widely cited definition of pair programming
roles. Here, they use the terms “driver” and “naviga-
tor” in their definition. According to Williams and
Kessler, the driver is the programmer “typing at the
computer or writing down a design”, while the naviga-
tor “has many jobs, one of which is to observe the
work of the driver, looking for tactical and strategic
defects.” They then go on to describe the navigator as a
“strategic long-range thinker”. This definition broadens
somewhat the scope of the “navigator” role.

Few studies have focused specifically on the nature
of the interactions between the programmers in a pair
and, in general, the idea that pairs adopt these driver
and navigator roles has gone unquestioned. Three ex-
ceptions are Chaparro et al. [9], Bryant [10] and Bryant
[11]. Chaparro et al. noted that driver and navigator
roles were difficult to identify in student pairs, but they
speculated that perhaps professional programmers ad-

hered more closely to the “driver” and “navigator”
roles as compared to students who had only recently
been introduced to the concept of pair programming.
Bryant [10] analyzed patterns of pair activities and
found that student pairs, rather than operating in
“driver” or “navigator” roles, switched between
“driver” activities and “navigator” activities somewhat
erratically. When applied to professional programmers,
Bryant found that pairs had the same behavioral profile
regardless of which programmer was “driving” and
which was “navigating”. Methodological limitations,
however, prevented her from conclusively determining
whether this simply reflected seamless transitions by
professional programmers between the two roles (i.e.,
drivers always act like drivers and navigators always
act like navigators) or whether programmer behavior
was simply role independent. In her later work on the
expertise perception [11], Bryant is largely skeptical of
the level of abstraction differential implied by the
driver-navigator characterization, at one point ques-
tioning “how it would even be possible for two people
working at different levels of abstraction to success-
fully sustain a conversation at all.”

In general, few researchers have studied the dynam-
ics of pair interaction. Williams and Kessler [6] discuss
the potential effects of expertise and personality type
on pair interaction, but provide primarily anecdotal
support. They argue that cross-pairing programmers of
different levels of expertise could produce opportuni-
ties for learning and potentially improve code through
the questioning of basic assumptions, but that these
mismatches also had the potential to impede pair func-
tion. Experts paired with novices may grow tired of
constantly having to “train” their partner; novices may
not have sufficient knowledge or experience to give
valuable input. Similarly, they note that novices paired
with novices can be ineffective if neither programmer
is sufficiently knowledgeable to contribute effectively
to the process. They also raise personality as poten-
tially confounding factor, noting that introverts may
have difficulty fully contributing to the exchange and
evaluation of ideas that lies at the heart of pair pro-
gramming efficacy.

Empirical support for these arguments has been
mixed. VanDeGrift [12] surveyed students enrolled in
introductory programming courses and reported that
the second largest complaint about pair programming
was being forced to work with partners of different
skill levels. Katira et al. [13] attempted to assess the
effects of personality and skill on the compatibility of
student pairs, but had mixed results. Sfetsos et al. [14]
found that pair productivity was correlated to commu-
nication volume in mixed personality pairs (mixed in
terms of Keirsey temperament), but that no such corre-
lation was present for non-mixed pairs. Padberg and

Muller [15] found a correlation between the comfort
level of programmers within pairs (what they call the
“feelgood” factor) and overall pair performance, but
did not investigate the specific causes of pair comfort.
We are not aware of any empirical studies of the effect
of expertise.

This study seeks to examine pair interactions be-
tween professional programmers in a natural work en-
vironment; that is to say, in the context of a large team-
based software project. We, in particular, seek to un-
derstand what factors may influence pair programming
interactions and how they might do so.

3. Research Site

The results presented in this paper are based on a
four month ethnographic study of pair programmers on
two software development teams. The two teams were
located in two different startup companies in the San
Francisco Bear Area. Both teams were formed with
eXtreme programming in mind as the development
methodology of choice and therefore had a long history
of pair programming.

Team A was formed in January of 2004. The team
initially had six developers, but hired three additional
programmers by the end of the observation period.
With the exception of the new hires, the developers on
the team were very familiar with the code base; four of
the team members had been with the team since its
inception. Pair assignments were negotiated on a daily
basis, in a fairly ad hoc manner, although the team took
pains to ensure diversity in pair partners over the
course of a week of work. It was fairly common for
neither member of the pair to be overly familiar with
their assigned task for the day. The developers on
Team A worked inside a large open bullpen, equipped
with a set of shared workstations. Each station had dual
flat screen monitors, a single machine, dual keyboards
and dual mice.

Team B was formed in early 2002 and had been
steadily growing in size since formation. When obser-
vations began, the team had nine programmers; the
team hired an additional full-time programmer during
the course of the observation period. Because the pro-
ject code base for Team B was both older and more
extensive than the code base for Team A, a thorough
knowledge of the code’s basic design and structure was
less pervasive among the developers on Team B; four
of the older team members were generally considered
to be the most knowledgeable in this respect. Pairs on
Team B were formed in an ad hoc manner each morn-
ing. Like Team A, members of Team B usually were
not too knowledgeable about their tasks. However, due
to the practice of “spiking”, programmers sometimes
had more knowledge with respect to a task than his or

her partner. For difficult and complex tasks whose
scope and cost were not apparent, the team sometimes
assigned programmers to “spike” the task, or write up
some rough, exploratory code, to gauge the complexity
of the task. The programmers who spiked a particular
task would not necessarily be subsequently assigned to
implement the task, but in cases where one member of
the pair had participated in the spike and the other had
not, the spiking programmer would have substantially
more knowledge of the task.

Programmers on Team B had personal desks inside a
large open space. Each desk was equipped with a per-
sonal machine, monitor, a single keyboard and mouse.
Equipment was non-standard across the team and the
programmers frequently augmented their systems with
additional equipment (most commonly monitors).
When a pair formed at the beginning of the workday,
the pair would negotiate for the role of the “driver.”
After designating this role, they then worked at the
driver’s desk for the duration of the task.

4. Methodology

We conducted ethnographic observations at both

sites. We visited Team A from June 2005 to September
2005 and we visited Team B from May 2005 to August
2005. During the observation periods, we visited the
teams on a weekly basis. In each observation session,
we followed one pair of programmers for one and a
half to three hours. We sat behind them as they
worked, taking notes on their interactions and activi-
ties. Whenever possible, we recorded dialogue, which
we transcribed and integrated with our notes to pro-
duce a detailed record of each session. We then re-
viewed our records to identify consistent and repeated
patterns of behavior. We developed a coding scheme to
help us categorize programmer behaviors, which we
applied to all the observation data from Team A (to a
statement level) and a selection of the data from Team
B. All told, we had approximately forty hours of pair
programming behavior to draw from in our analysis.

4. Findings

Observed pair behavior on both software develop-
ment teams differed greatly from the driver and navi-
gator roles described in the academic and practitioner
literature. When the two programmers had equivalent
expertise, they engaged jointly in programmer activi-
ties. When the distribution of task-relevant expertise
differed, the programmer with more expertise domi-
nated the interaction. We also found that keyboard
control had a subtle, but consistent effect on decision-
making. We discuss each of these findings in turn.

5.1. The Driver/Navigator Myth

Aside from the task of typing, we found no consis-

tent division of labor between the “driver” and the
“navigator”. Instead, the two programmers moved
from task to task together, considering and discussing
issues at the same strategic “range” or level of abstrac-
tion. In pairs where the level of expertise was roughly
equal, the two programmers contributed to the discus-
sion at roughly equal rates. The thought processes of
the two programmers appeared to be tightly coupled,
blending into a cohesive stream of discourse.

5.1.1. Pair Programmer Interaction. To illustrate
typical pair interaction, we present an excerpt from a
pair programming session from Team A. For reasons
of space and conciseness, all of the excerpts used in
this paper have been edited. In addition, all of the
names have been replaced with pseudonyms. Here, the
two programmers, Anthony and Ben, are implementing
a new feature. In the portions of the session shown
below, Anthony has control of the keyboard.

Anthony: Um, and we always expect an operation? [He types]
Ben: And there's always the action set.
Anthony: [as if he had forgotten until Ben mentioned it] Yes.
Ben: We’ll just run it to see what comes out. Can't waste your

brain cycles on these things. Okay, add one to the sub-
string.

Anthony: To the substring. Well, if it's zero, you do want the
zero case.

Ben: Oh, maybe we don't need the max thing, just add plus
one to the substring and it always works?

Anthony: Oh, sneaky. [He deletes the old code and imple-
ments this version instead] That was sneaky.

Ben: It's a pure coincidence. Or somebody ten years ago had
this case and said oh, minus one would be a good num-
ber.

Anthony: Right? So now we have this extraction?
Ben: So now keep the strings in a set.
Anthony: Right.
Ben: And don't go there if you've already been there.

Anthony and Ben’s behavior at the beginning of the
session looks reasonably consistent with traditional
concepts of pair programming roles; Anthony is fo-
cused on implementation and Ben is offering sugges-
tions and advice. When Anthony runs into a complica-
tion with his current implementation (the “zero case”),
Ben is able to supply a cleaner solution. While they are
both immersed in the technical detail of the implemen-
tation, Ben is perhaps the more tactical of the two.
These roles will change as they finish their implemen-
tation and move to their next task.

Anthony turns to face Ben.

Anthony: Okay, so we can write the code in the way that we

try to visit the place- we have a visit method that takes a

link and it maybe does nothing, or do you want to go
with if checks before that and doesn't visit?

Ben: Are you saying have a visit or not? Or are you talking
about a line that should be in the method?

Anthony: No, we should have- we should have a visit
method, you go there and it does all this checking?

Ben: A “go there if we haven't been there before” method. Is
that what you mean?

Anthony: Right.
Ben: Yeah, I'm just wondering if visited is the best name. It's

always hard, these things that are "do this unless it's in
the cache" methods.

Anthony: Yeah. [Anthony’s hands are clasped. He stares
straight ahead, thinking.] So let's see, how to imple-
ment. How do we test that we've got actually invoke the,
um...

Ben: Well, give it a list with a lot of links and see how many
times it visits.

Anthony: We could have a hasVisited method.
Ben: We, uh, should probably have that too. Yeah.

Anthony begins to type. He creates a new method.

In this portion of the excerpt, the pair pauses. An-
thony asks Ben a strategic question about the overall
direction of their implementation; this causes them to
begin discussing implementation options at this new
level of abstraction. Note that it is Anthony who steers
the discussion to a more strategic level, although he is
technically acting as the “driver”. Based on the de-
scriptions of driver and navigator roles, we initially
expected to find that the “navigator” would be chiefly
responsible for sparking discussions from a more stra-
tegic or broader perspective, but in nearly all of the
interactions between two programmers with equal ex-
pertise, these issues were raised by both the “driver”
and the “navigator” at approximately equal rates.

In general, the dialogue between pairs was notable
for the parity of contribution between the two pro-
grammers. Ideas and suggestions came from both par-
ties, and programmers conscientiously solicited each
other’s input in the course of discussion. We did not
see a sustained concern for the details of implementa-
tion by one programmer coupled with a more strategic
world view from the other; rather the pairs moved to-
gether between the various levels of strategic thinking
and implementation detail. Aside from the duties of
keyboard input, the programmers in these pairs jointly
took on the responsibilities of both “driver” and “navi-
gator”.

A substantial factor behind this pattern of behavior is
that programming itself is not a continuous activity,
but rather a sequence of fits and starts. Pairs would
engage in short bursts of implementation and then, as
Anthony and Ben did in the preceding excerpt, pause
for reflection and design when they encountered unan-
ticipated challenges or completed portions of function-
ality. When intended implementation was clearly un-

derstood by both programmers, then the pair’s behav-
ior resembled the driver-navigator characterization.
But, when the course of action was not quite as clear,
for example during such activities as design, code
comprehension and debugging, the pairs generally
worked jointly, maintaining a steady exchange of ideas
and feedback. Because communication within the pair
occurred chiefly through conversation, whenever one
programmer began to consider the problem from a new
conceptual perspective, the other programmer, drawn
in by the reciprocal nature of conversation, almost al-
ways did so as well.

5.1.2. Shared Context. Working collaboratively on the
same task on the same machine meant that the pairs
shared a substantial amount of visual and mental con-
text. On occasion, generally after the pair had negoti-
ated and then agreed to a specific course of action, the
programmers sometimes slipped into a mode of behav-
ior where they were exceptionally in sync with one
another. Anthony and Ben fell into this mode a bit later
in the same work session, as they finished up imple-
mentation work on a particular function:

Anthony: [muttering as he types] Visited... operations.
Ben: We don't need to check that it's there, just dump it in-
Anthony: Right. [He deletes a line of code.] I know it's going

to fail now, because I don't strip the, um-
Ben: Right. [Anthony runs the code and test exceptions show

up on the screen.]
Anthony: Good.

Here, Anthony and Ben are so tightly coupled that
sentence completion is not required for effective com-
munication. Ben begins to verbalize a train of thought,
but Anthony cuts him off, already aware of how the
thought ends. Similarly, Anthony never has to specify
why he expects the test to fail, because both the reason-
ing and the expectation are clearly shared. This mode
of interaction could not be sustained for very long, but
was always recognizable from the incomplete verbal
utterances between the two participants.

5.1.3. Keyboard Switching. On Team A, the tight
coupling between programmers was reinforced by their
tendency to switch keyboard and mouse control fre-
quently. Team A’s shared workstations were outfitted
with dual keyboards and dual mice. Consequently,
both pair programmers had ready physical access to a
keyboard and mouse, although only one programmer
could effectively use the devices at a time. Pairs on
Team A developed a pervasive practice of rapidly
switching control of machine input during program-
ming sessions. The following excerpt demonstrates
how fluid and how frequent these transitions could be.
Casey and Dale will switch control of the keyboard
three times within a two and a half minute period.

When the episode begins, Dale is typing on the key-
board, while Casey watches:

Dale: Set...? SetConfig? Do we have this one?
Casey: Uh, not set. It's just config. [Casey turns and puts her

fingers on her keyboard.] And it's as a string, which is
important. Actually, what we need to do-

Dale: A list of strings? Not just one?
Casey: We need to do something like FetchAddress.

Right? And send it to something like that name with a
value in it. Does this take? [She creates the constant] Oh
shoot-

Dale: If you don't mind, I would say, can I show you some-
thing? [He takes the mouse] We can initialize the config
here [He points to a section of code using the mouse]
and add the values in each of the tests to see exactly
what we're using.

Casey: That's fair, I would agree with you. But the only thing
is it's used in like nine places.

Dale: The- We can move them up... So where are they used?
Casey: Well, so testFromServer, testFromClient both use

them… So testFromUser is the only one that doesn’t
right now.

Dale: [scrolling down in the file] Let’s keep it here,
yeah.

Casey waits for her to finish and then begins to type.

Casey: So what I was going to do is at least make this one
eleven something... [She types] Yeah. I think these were
changed over yesterday and obviously this is a variable,
but it's really a string, so... [Casey turns a string vari-
able into a constant.] I’ll rename it in a second.

By convention, the programmers refrained from typ-
ing when their partner was actively typing, but they
frequently jumped in during pauses or periods of hesi-
tation. In this excerpt, Dale types initially and then
Casey switches in, beginning to type when Dale
pauses. For that particular switch, Casey positions her
hands on the keyboard well before she actually intends
to type. This was not unusual among the programmers
on Team A; both members of the pair would often be
poised to use the keyboard at any given moment. Later
in the excerpt, when Dale wishes to type, he interrupts
Casey to ask permission to take control of the keyboard
and mouse. Once permission is granted, the transition
requires little additional effort; the second partner sim-
ply begins typing.

Switches occurred for several reasons. Sometimes it
was simply easier for a programmer to execute an ac-
tion him or herself, say typing in a line of code or lo-
cating a particular file, than it was to describe that ac-
tion to their partner. In the course of completing their
tasks, programmers often temporarily deferred control
of the keyboard to their partners when they knew that
their partner was more practiced in a particular subtask,
such as using a particular feature or plug-in of the IDE.
In some instances, it simply seemed that both pro-

grammers were eager to type, with the non-keyboarded
partner switching at pauses or during natural breaks in
the task. Keyboard switches also occurred when one
programmer in a pair was called away; generally the
remaining partner took over keyboard control to con-
tinue working.

For the pairs on Team A, frequent shifts served to re-
inforce the tight coupling between the programmers.
Faced with the constant prospect of switching roles
with their partner, the programmers maintained a high
level of mutual awareness of each other’s actions. The
effect of switching on the level of mutual knowledge
was perhaps most evident towards the end of the ob-
servation period when, egged on by a newly hired team
member, the developers on Team A experimented with
using only one keyboard per pair. Below is a quote
from Evan, comparing his experience with the two
input configurations:

Evan: When I have the second keyboard I am always think-
ing about what I want to type and when to jump in -
more focused on the story [i.e., the task]. When I was
drinking the coffee with the keyboard [he laughs], I
was like, "Okay! You do the work! I am drinking cof-
fee right now!"

Although Evan is not actively typing at the keyboard
in either of the situations he describes, he clearly feels
more engaged in the task when he has a keyboard
available to him. When the prospect of switching roles
is more remote, he maintains a much lower level of
awareness regarding his partner’s activities. Team A’s
foray into single keyboard use was brief, but for the
few pairs we observed during this period, the non-
keyboard controlling programmer appeared more prone
to distraction.

Even with a single keyboard, the pairs on Team A
attempted to continue their practice of rapid role
switching. The increased effort required to physically
shift the keyboard across the table to switch, combined
with the programmer’s inability to have the immediate
keyboard access they were accustomed to, was frustrat-
ing to the pairs and caused them to quickly tire of the
setup. By the end of the observation period, the bulk of
the pairs had returned to dual keyboard setups.

Team B’s technical setup was not conducive to con-
trol-switching and, in fact, very little switching oc-
curred among the pairs on the team. Unlike Team A,
Team B did not use shared workstations. Instead, when
a pair formed, one member would be designated as the
“driver” for the work session. The pair would then
work on that programmer’s machine located at that
programmer’s desk. Team B’s machines were outfitted
with a single keyboard and mouse. This meant that
switching required more coordination and an explicit
physical relocation of the keyboard. Switching was

additionally impeded by custom machine configura-
tions. A quote from Finn, a developer on Team B, is
indicative of how different the practices on the two
teams were:

Finn: No, we try to rotate around. By rotating it around – so
sometimes when I sit with Greg, you know, I can’t
type – he’s an emacs user, I’m a vi user, I just can’t put
my fingers to the keyboard, I wouldn’t know what to
do.

On Team B, once a pair session began the program-
mer with keyboard control generally retained keyboard
control for the entire session. The pairs on this team,
not accustomed to rapid switching, did not find this
unusual, but between the expertise differentials on the
team (discussed in the next section) and the lack of
control switching between paired programmers, main-
taining active engagement in the task appeared more
effortful for the programmers on Team B.

5.2 Expertise and Interaction

Due to team and project structure, Team A and
Team B had very different distributions of expertise
which lead to contrasting patterns of pair interaction
across the two teams. When gaps in expertise were
sufficiently large, the programmer with more expertise
dominated the pair programming interaction. We use
the term expertise here to refer to a combination of
programmer skill and knowledge.

Team A had a very uniform distribution of exper-
tise. The team was small and relatively young. The
majority of the programmers had been on the team
since the project began. Although sizeable, the devel-
opers considered the code base to be relatively easy to
understand; one programmer described the bulk of the
code as being “a variation on a theme”. Indeed, when
new programmers joined the team, they rapidly devel-
oped a proficient understanding of the code base. Team
A did not appear to have any particular mechanism for
training their newly hired developers, instead they
simply began pairing with senior developers. During
their first few days, the more senior programmer spent
the bulk of these pair sessions explaining the basic
structure of the code. Within one week, however, the
new hires had become sufficiently proficient in their
understanding of the code structure such that pairing
proceeded normally. Since Team A did not regularly
spike functionality prior to implementation, the devel-
opers usually had relatively equivalent levels of famili-
arity with their work tasks. The developers on Team A
all had at least eight years of professional program-
ming experience.

Team B had deeply entrenched differentials in ex-
pertise across the project; the more senior developers

on the project were substantially more familiar with the
code base than the newer team members. Team B was
both older and larger than Team A. The team had
started small, but gradually accumulated programmers
over the course of the project’s development. While
Team B’s code base was comparable in size to Team
A’s, it did not share the same ease of understandability.
One of the senior programmers on the team noted that
it had become difficult to “communicate the design of
our system” to new team members. He felt that a good
portion of the code recently added to the project had
been written without “a conceptual knowledge of how
the system works”. In addition, Team B regularly
spiked solutions, leading to potential gaps in task fa-
miliarity. The developers on Team B ranged from hav-
ing three to over twenty years of professional experi-
ence.

The gaps in expertise between the programmers on
Team B clearly influenced pair programming interac-
tions on the team. On Team B, the member of the pair
with greater expertise drove the bulk of the program-
ming discussions. When compared to the pair pro-
grammers on Team A, the difference in the pattern of
discourse was striking. In the following example, we
see a senior programmer, Ilya, interact with a newer
team member, Hugh. Hugh and Ilya are implementing
a new function. Hugh controls the keyboard, but Ilya
will direct the majority of the interaction during the
session:

Ilya: So new has dollar sign myfield and a percent args.
Yeah, we want a percent args too. But instead of percent
args…have it be getNewArgs. [Hugh types in these
changes] Just call it dollar sign myfield and percent
args. Get rid of getNewArgs, just call it per-
cent…comma percent args.

Hugh: This is…
Ilya: Actually, it's dollar sign value comma percent args.
Hugh: Put dollar sign class?
Ilya: [As Hugh continues to type] Yeah, then percent args.

Next line, just do a return dollar sign value arrow super
colon colon new and pass it percent args. And we want
to do something in between those two lines, of course.
Basically, you want a dollar sign my variable outside of
the package scope right there.

Hugh: So…
Ilya: Parenthesis. So percent, getNewArgs… [Hugh types.]

Exactly. So save off those two lines in the new method.
Hugh: Uh…
Ilya: Right…down, down, down, there we go.
Hugh: So we…
Ilya: So, percent getNewArgs equals percent args [Hugh

types this line to terminal.] Uh, I think that's it.
Hugh: This?
Ilya: Yeah, that's all we want to do. Get rid of the blank line

and close the new.

In addition to being more senior, Ilya had also
“spiked” the code during the previous week. Conse-
quently, he has a much greater familiarity with both the
details of task implementation and the overall project
code base than Hugh has. As this excerpt clearly dem-
onstrates, Ilya dominates the interaction, determining
how and what to implement while Hugh takes direc-
tives (to the keystroke) from him; Hugh primarily asks
for minor clarifications. Hugh’s level of participation
here is actually unusually low (he will, in fact, begin to
contribute somewhat more actively later in the ses-
sion), but the structure of this exchange is consistent
with the majority of the pair programming interactions
on the team as a whole: the programmer with greater
task knowledge or code base familiarity dominated.
This occurred regardless of which programmer was at
the keyboard. Although not evident from the excerpt
shown above, like the pairs on Team A, the pairs on
Team B still moved across levels of abstraction to-
gether. Unlike Team A, however, the majority of the
shifts between levels were initiated by the programmer
with greater expertise. When expertise between the
programmers was more equal, their interactions had
more of the parity that characterized pair interaction on
Team A.

On Team A, when the programmers in a pair had a
substantial difference in expertise, the developer with
greater expertise reviewed the technical material in
question with his or her partner until a sufficient
amount of shared expertise had been established; they
would then proceed to pair normally. Thus, it was rare
for gaps in expertise to persist, but it could occur when
a task was exceptionally long in duration. For tasks
that spanned several days, one programmer was usu-
ally designated to see the entire task through, although
his or her partner would change on a daily basis. Al-
though we did not witness such persistent gaps, devel-
opers on Team A reported difficulty when introduced
as the new partner on the second or third day, citing,
for instance, time pressure as a barrier to establishing a
sufficiently uniform level of expertise. One developer
described his behavior in these pairs as largely “pas-
sive”, noting that he did not want to impede overall
implementation progress by forcing his partner to stop
and explain the technical background required to thor-
oughly understand the task. This leads us to believe
that in cases of exceptional expertise differentials, pairs
on Team A may come to follow a similar pattern of
behavior as the pairs observed on Team B did.

5.3. The Effect of Keyboard Control

Across both teams, when differences in levels of

expertise were not an issue, control of the machine
input had a consistent, albeit subtle, influence on pair

interactions: the programmer that controlled machine
input had a distinct advantage with respect to decision-
making.

Barring issues of expertise, the pair programmers
we observed constantly solicited and considered the
input of their pair programming partner. However,
when determining the ultimate course of action, the
programmer controlling the machine input (generally,
this meant control of the keyboard) had, in some sense,
the final authority in decision making. Their partner
could give suggestions, but fundamentally, the devel-
oper at the keyboard decided which suggestion to fol-
low. The following excerpt illustrates this effect. Dale
and Evan, programmers from Team A, are attempting
to debug a function they have just written. As this ex-
change unfolds, Dale uses the keyboard and mouse,
while Evan watches. Evan will propose a course of
action (quickly move to the next breakpoint by press-
ing the F9 button). Dale will not agree:

Evan: Put a break point.
Dale: We have a breakpoint here. [Dale hits run.] It should

come here. [He hits run again, advancing to the next
breakpoint.] It does. [Dale begins to step through the
code line-by-line.]

Evan: No, [press] F9.
Dale: [mildly] No, I want to go here.
Evan: But-
Dale: [After a pause] We are getting here. Ah, we are, but

it’s another one. I don’t think it’s… [He hits F9 and
the debugger stops on that line again.] That’s ours,
now we’re getting here, and address match list… okay,
so that’s where it is. This is… a… getPrefix for- we
need another one.

Here we see that Dale’s control of the keyboard and
mouse enables him to essentially ignore Evan’s pro-
posed course of action, in spite of Evan’s subsequent
objection. This exchange is unusually direct, both in
the language used by the two programmers and how
the disagreement is resolved. When pairs disagreed, the
programmers generally attempted to reach a consensus
before acting. When the issue disagreed upon was rela-
tively minor in scope or consequence, we often saw the
programmer with input control simply implement the
course of action they favored. Strong norms of mutual
respect and politeness largely kept this behavior re-
stricted to fairly inconsequential decisions, but since
pairs were mainly peer-based, compliance with the
negotiated decision was fundamentally voluntary.
Rhetorically, once the action was completed, it usually
became more effort for the other programmer to at-
tempt to undo the action than it was to agree. Conse-
quently, the non-typing member of the pair was, by
default, at a slight disadvantage when it came to influ-
encing the pair’s ultimate course of action. On Team
A, the practice of frequently switching keyboard con-

trol served to moderate this disadvantage. For Team B,
these effects were largely obscured by the differentials
in expertise (as discussion in section 5.2).

6. Discussion and Implications

Although commonly cited in descriptions of pair
programmer behavior, even by the programmers them-
selves, the roles of “driver” and “navigator” as they are
commonly defined in the practitioner and academic
literature do not match the pair programming interac-
tions observed in professional programmers. Pair pro-
grammers did not think on different levels of abstrac-
tion while working; instead they moved across these
levels of abstraction together, considering and discuss-
ing issues at the same strategic “range”. While the lack
of driver/navigator division of labor was true for both
teams, other patterns of pair programming behavior
were linked to characteristics of the teams and pairs in
which they occurred: the distribution of expertise
across programmers on the team and frequency with
which pairs alternated in keyboard control. The behav-
iors observed in this study have several implications
for pair programming practice.

Move beyond the “Driver” and the “Navigator”.
The pair programmers in this study rarely hewed to the
roles of “driver” and “navigator”, yet these roles are so
widely accepted in both the academic and practitioner
conceptualization of pair programming that they are
built into the tools we construct to support pair pro-
gramming [16] and the materials through which we
teach pair programming [6]. This characterization is so
pervasive that even the programmers observed for this
study sincerely described their own interactions in
these terms, despite consistently deviating from these
roles during their own pair work.

Our observations revealed pair programmers engag-
ing in a natural pattern of interaction that, aside from
designating primary responsibility for keyboard input,
lacked an explicit division of labor. Instead, the pairs
appeared to be most effective when both programmers
took on driver and navigator responsibilities. This sug-
gests that the driver/navigator characterization may not
only be inaccurate, but that training pair programmers
to work in these roles may actually inhibit more natural
and more effective ways of working.

Help Programmers Stay Focused and Engaged. Pair
programming is an intensive process that requires sus-
tained energy and focus from both programmers to be
effective. The variation in interactions between the
programmers observed for this study demonstrated that
the right tools and work practices can help both pro-
grammers maintain active involvement in the pro-
gramming. In this study, programmers felt more en-

gaged in their tasks when they either had keyboard
control or keyboard control was imminent. The data
suggest that equipping pair programmers with dual
keyboards to facilitate the rapid switching of keyboard
control can be a simple way to foster engagement.
Practices that require regular shifts in keyboard respon-
sibility (such as ping pong pairing) should also be
helpful in this regard.

In general, the tools we develop to support collo-
cated pair programming and distributed pair program-
ming should take care to support programmer engage-
ment. This problem may be exacerbated for distributed
pairs, where programmers may lack the immediate
social and physical cues of their partners to help main-
tain interest and focus. Tools for distributed pair pro-
gramming therefore should attempt to minimize barri-
ers to transitions in keyboard control and maximize
shared visual and mental context.

Consider differentials in programmer knowledge.
Expertise emerges as a particularly important factor
influencing pair interactions, a finding which affirms
both the arguments made by Williams and Kessler [6]
and informal reports that individuals dislike pairing
with someone with lower expertise [12, 17]. Rhetori-
cally, when the difference in expertise is large, the pro-
grammer with less expertise has difficulty assessing the
technical arguments put forth by the “expert”. The pair
programming literature suggests that one possible role
for the “novice” is to question assumptions by request-
ing reviews of the code logic [6], but in a time pres-
sured work environment this does not appear to be
realistic. In the pairs observed for this study, the less
knowledgeable programmer instead reported a ten-
dency to become “passive”, disengaging from the task
so as not to impede his or her partner’s ability to make
timely forward progress on the task. This passivity also
reduces any benefits that these programmers might
receive from exposure to the production or alteration of
unfamiliar areas of the code base. In a professional
environment, pair programming may simply not be an
effective way to negotiate large differentials in pro-
grammer knowledge. Developers should consider care-
fully the ramifications of expertise when forming pairs.

In our observations, pairing less knowledgeable pro-
grammers with more knowledge programmers did
seem to be effective when the less knowledgeable pro-
grammer was new to the team and code base. Both
Team A and Team B hired new programmers during
the observation period and these programmers did not,
as the regular programmers did, shy away from asking
for clarifications and explanations of code they did not
understand. Unfortunately, our observations at both
teams ended shortly after the programmers were hired,
so we were unable to determine how or when this be-
havior changed. These programmers, at least during

their first week with the team, appeared to feel much
more latitude in interrupting task progress to request
explanations, likely on account of their positions as
new hires.

Given the size and state of modern code bases, un-
even distribution of expertise among a team’s pro-
grammers is likely to be common. Team B has begun
giving a weekly series of team wide talks on the struc-
ture of their code base in an attempt to reduce the dis-
parity in expertise in programmers, but several of the
developers on the team feel that, for their particular
code base, specialization of expertise is inevitable. In
academic environments, the effect of expertise may be
less pronounced due to a smaller general disparity in
expertise across students in a course. For the gap in
expertise to be equivalent, one group of students would
have to have spent the better part of two years review-
ing the course material relative to their peers.

Avoid pair rotation late in a task. Although both
teams felt that short tasks (ideally one day in duration
or less) were the ideal, in practice tasks sometimes
spanned more than one day. Team A held to a consis-
tent system of rotating pair partners daily regardless of
the length of the task. This was not problematic when
the tasks where short, but for multi-day tasks, this led
to significant differences in the level of task knowledge
between the paired programmers, inhibiting the ability
of the newer programmers to contribute effectively.
While, in general, programming partner rotation ap-
peared to be effective in ensuring increased dispersion
of code knowledge across the team, rotating late in the
task may break up an effectively functioning pair and
introduce a new programmer in a disadvantaged posi-
tion.

6.2. Future Directions

This study highlights several factors that influence
pair programmer interactions, but we have really only
begun to explore the dynamics of pair programming.

An inherent limit of naturalistic observation is a rela-
tive lack of control over that which one observes. In
this study, all the pair programming observed occurred
in the context of eXtreme programming. We have tried
to delineate the specific practice of pair programming
from the overarching methodology, but we cannot de-
finitively exclude the effect of XP on the behavior of
these programmers. A study of pair programmers
working in a non-XP environment would add greatly to
our understanding of how both the factors discussed
here and other, heretofore unconsidered factors impact
programmer performance.

This study sought to explore how professional pair
programmers interact, taking those interactions where
both programmers were engaged in the programming

task to be the ideal. We found that a substantial knowl-
edge differential between paired programmers inter-
fered with the active exchange of ideas and feedback
during programming sessions. For pair programming
to be an effective mechanism for knowledge exchange
in professional environments, either the programmers
must already share a substantial amount of knowledge
or the less knowledgeable programmer must feel free
to ask questions, even at the expense of working more
productively. This suggests that knowledge transfer
through pair programming will be more effective at
certain times (e.g., when developers first join a project
or at lulls in the development timeline) and for certain
forms of knowledge (e.g., design patterns, tool fea-
tures, language features). Knowledge transfer through
pair programming bears further study and evaluation,
particularly for programmers joining new software
development projects.

 Finally, this study demonstrates that the professional
programming environment differs in important ways
from the academic programming environment. Student
studies are extremely valuable, but we cannot assume
that they will generalize completely to the behavior of
programmers in a professional environment.

7. Conclusions

This paper presents a descriptive ethnographic study
of professional pair programming behavior on two
software development teams. The study finds that pair
programmers behave in ways inconsistent with the
driver/navigator division of labor that is described in
the pair programming literature. We identify expertise
and keyboard control as important factors influencing
pair programming interactions and make several rec-
ommendations for software development practice
based on these observations.

9. Acknowledgments

We are grateful to Özgür Eris, Scott Klemmer,
Larry Leifer, Robert Plummer, and George Toye for
their insightful discussions, to Diane Bailey for her
guidance during the formative stages of this work, to
Jim Herbsleb for his thoughtful comments and feed-
back, and to the programmers on both teams for their
patience during our observations. This work was par-
tially sponsored by a gift from Microsoft Research.

9. References

[1] C. McDowell, L. Werner, H. Bullock, and J. Fer-

nald, "The effects of pair-programming on per-
formance in an introductory programming course,"

in Proc. SIGCSE, Northern Kentucky, 2002, pp.
38-42.

[2] H. Hulkko and P. Abrahamsson, "A multiple case
study on the impact of pair programming on prod-
uct quality," in Proc. ICSE, St. Louis, Missouri,
2005, pp. 495-504.

[3] J. T. Nosek, "The case for collaborative program-
ming," Communications of the ACM, vol. 41, pp.
105-108, 1998.

[4] J. Nawrocki and A. Wojciechowski, "Experimental
evaluation of pair programming," in Proc. ESCOM,
London, UK, 2001.

[5] L. Williams, "The Collaborative Software Proc-
ess," in Computer Science. vol. Ph.D. thesis Salt
Lake City, UT: University of Utah, 2000.

[6] L. Williams and R. Kessler, Pair Programming
Illuminated. Boston, MA: Addison-Wesley, 2003.

[7] K. Beck, Extreme Programming Explained. Bos-
ton, MA: Addison-Wesley, 2000.

[8] adaptionsoft.com, "XP Practices: Pair Program-
ming." vol. 2005, 2005.

[9] E. A. Chaparro, A. Yuksel, P. Romero, and S. Bry-
ant, "Factors affecting the perceived effectiveness
of pair programming in higher education," in Proc.
PPIG, Brighton, UK, 2005, pp. 5-18.

[10] S. Bryant, "Double trouble: Mixing qualitative and
quantitative methods in the study of eXtreme pro-
grammers," in Proc. VL/HCC, Rome, Italy, 2004,
pp. 55-61.

[11] S. Bryant, "Rating expertise in collaborative soft-
ware development," in Proc. PPIG, Brighton, UK,
2005, pp. 19-29.

[12] T. VanDeGrift, "Coupling pair programming and
writing: Learning about students perceptions and
processes," in Proc. SIGCSE, Norfolk, Virginia,
2004, pp. 2-6.

[13] N. Katira, L. Williams, E. Wiebe, C. Miller, S.
Balik, and E. Gehringer, "On understanding com-
patibility of student pair programmers," in Proc.
SIGCSE, Norfolk, Virginia, 2004, pp. 7-11.

[14] P. Sfetsos, I. Stamelos, L. Angelis, and I. S. De-
ligiannis, "Investigating the Impact of Personality
Types on Communication and Collaboration-
Viability in Pair Programming," in XP/Agile 7,
2006, pp. 43-52.

[15] F. Padberg and M. Muller, "An Empirical Study
about the Feelgood Factor in Pair Programming,"
METRICS, vol. 10, pp. 151-158, 2004.

[16] C.-W. Ho, S. Raha, E. Gehringer, and L. Williams,
"Sangam: a distributed pair programming plug-in
for eclipse," in Proc. OOPSLA workshop on eclipse
technology eXchange, Vancouver, BC, Canada,
2005, pp. 73-77.

[17] R. Gittins and S. Hope, "A study of human solu-
tions in eXtreme programming," in Proc. PPIG,
Bournemouth, UK, 2001, pp. 41-51.

